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Abstract

Aim. ECG signals during Magnetic Resonance Imaging
(MRI) are distorted by a magnetohydrodynamic (MHD)
artefact. We proposed a model to generate synthetic MHD
artefacts to augment a dataset of standard ECG and to
train deep learning models more robust to this distortion.
Methods. An open database of ECG in MRI was used to
extract a median MHD template over a small subject pop-
ulation. These were decomposed on a basis of Hermite
functions to represent the MHD effect by a set of 29 pa-
rameters. A Gaussian mixture model was fitted on these
coefficients, which allows MHD artefacts to be generated
by sampling this probability distribution. The model was
assessed on a heartbeat classification task on an in-house
database of ECG signals acquired in a 1.5T MRI scan-
ner. A convolutional neural network (CNN) trained on the
MIT-BIH arrhythmia (MITAR) database without pretrain-
ing was compared with models pretrained on the CinC
2021 database using the proposed MHD specific data aug-
mentation. Results. The randomly initialized CNN, and
the proposed augmentation obtained average F1 scores of
0.21, and 0.44 respectively on the in-house MRI database.
Conclusion. The proposed MHD artefact generator can
be used to effectively augment ECG data and learn a rep-
resentation more robust to MRI environment distortions.

1. Introduction

Electrocardiogram (ECG) is a well-known modality
aiming at recording the electrical activity of the heart [1],
whereas Magnetic Resonance Imaging (MRI) is an imag-
ing modality that can depict functions or tissue characteri-
zation of this organ. ECG is mainly acquired during MRI
exams to: (i) monitor the patient during the acquisition, (ii)
synchronize the image acquisition with the cardiac activ-
ity and movement to ensure image quality during cardiac
MRI [2]. ECG is highly distorted inside the MRI scan-
ner due its electromagnetic environment and its three main
characteristics: (i) RF pulses, which can induces burns;

(ii) varying magnetic fields (so called gradients), which in-
duces high amplitude voltage on the ECG electrodes; and
(iii) the strong static magnetic field inside the MRI bore,
which interacts with charged particles flowing inside the
blood. This induces an extra voltage, so called magneto-
hydrodynamic (MHD) effect. This results in distorted sig-
nals that can impair the diagnosis use of the ECG record-
ings [2]. To our knowledge advanced analysis of the ECG
signal during MRI, heartbeat and/or rhythm classification,
is not yet available due to the MHD effect. MHD noise
suppression on ECG remains challenging as there is no ac-
cess to any ground-truth of the ECG signal inside the MRI
scanner [2, 3].

A solution to circumvent this issue would be to develop
features robust to this MRI specific noise [4]. While large
ECG databases have recently been made publicly avail-
able [5], databases of ECG signals acquired in MRI remain
small [6, 7].

It is therefore important to design a realistic MHD
model that could be used to synthesize large databases
of ECG with MRI specific noise, that could be used to
build (deep learning) models for advanced analysis of ECG
signals acquired in MRI. This study proposes a synthetic
model of the MHD effect, based on the sampling of density
probability from a parametric representation of the MHD
signal using an existing database of ECG signals acquired
in MRI [7].

2. Methods

2.1. MHD Generator

Krug et al. released a database of ECG signals acquired
in an MRI scanner [7]. This dataset contains 12-lead ECG
signals, sampled at 1024Hz, recorded from patients outside
and inside MRI scanners at various static magnetic fields.
We focused on recordings performed on 3T and 7T scan-
ners. Only patients for which signals were acquired while
they were lying inside the MRI bore in head-first and feet-
first supine position were kept, resulting in the inclusion of
10 pairs of ECG recordings (5 at 3T and 5 at 7T).
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Figure 1. Pipeline to build the MHD generator.

The pipeline is described on Figure 1. The ECGs cardiac
cycles were segmented around the R peak based on the
QRS position annotations. The RR intervals were mapped
to a cyclic phase φ within the interval [−π, π] ( the R peak
phase value was assigned the value −π/3). This phase
shift ensured the the cardiac cycle to be approximatively
centered around the T wave of the ECG (φ ≃ 0 at the T
wave). Then an average heartbeat template for each lead
in each recording was built (step 1). Inverting the position
of the patient into the MRI bore (head-first or feet-first)
inverts the polarity of the MHD artefact while not affect-
ing the polarity of the ECG signal [3]. Taking the differ-
ence between the template of the heartbeat in head-first
and feet-first thus roughly cancels the ECG contribution
and provides an average MHD effect template (step 2).
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Hermite functions (eq. (1)) form a basis of orthogonal
functions on L2(R) that can be used to decompose ECG
waveforms [8]. In the third step, the average MHD tem-

plate M could thus be parameterized by φ as:

M(φ) =

n∑
i=0

aihi(φ). (2)

We set the order of the decomposition to N = 28, the
proposed procedure resulted in the estimation of 120 (12
leads multiplied by 10 subjects) sets of 29 Hermite coef-
ficients ai. A mixture of 12 Gaussians was then fitted on
this training set (step4). Generating a new synthetic MHD
template for a single-lead recording then simply consists
in randomly sampling from this Gaussian mixture model,
which will provide virtually an infinite numbers of the 29
Hermite coefficients (step 5) required for realistic MHD
morphology.

2.2. Evaluation

In order to assess the usefulness of the proposed MHD
model, a data (MHD) augmentation technique was used
for the training of a heartbeat classifier in two consectuive
steps. First, a convolutional neural network (CNN) was
pretrained to build a representation of ECG heartbeats that
would be invariant to artefacts generated by the proposed
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MHD model. This representation was then inputed to a
simple linear model for heartbeat classification.

All ECG recordings were prefiltered and resampled to
250 Hz as in [4]. For a given QRS position, a 1.2s window
was extracted with the analyzed QRS positioned at 2/3 of
the window. The model architecture consisted in an 11-
layer CNN followed by a global max pooling layer leading
to 256 features [9]. A projection head and a predictor were
added following [10] for the pretraining. These were re-
moved and replaced by a single linear layer followed by
a softmax activation function for the heartbeat classifica-
tion task. All the neural networks were trained using a
stochastic gradient descent (SGD) and a cosine annealing
scheduler with warm restart [11].The maximum learning
rate was set to 10−3, with the scheduler hyperparameters
set as in [10].

The Computing in Cardiology Challenge 2021 [5]
database (CinC2021) was used for representation learning.
Data from INCART [12] were removed resulting in a train-
ing set containing 88179 ECG recordings. The CNN was
trained following a siamese scheme [10] to build in an un-
supervised way a representation of ECG heartbeats. For
each ECG recording, after preprocessing, a QRS detector
[13] was run on lead II to build a cardiac phase φ and ex-
tract the 1.2 s windows. For each window two leads were
randomly selected to build the two views needed for train-
ing the siamese network. Two MHD artefacts were then
generated and added to both ECG views. The pretraining
was done following the SimSiam approach [10].The model
minimizing the loss over 100 epochs was kept as the heart-
beat representation model. This model will be denoted
leadview + MHD. A second model denoted leadview
was trained with only the random lead selection.

A linear evaluation [10] of the the ECG representation
provided by leadview + MHD was then performed. A
heartbeat classifier was trained on the MITAR database
[14] to detect ventricular (V’) ectopic beats. The split
DS1/DS2 proposed by Llamedo et al. [15] was used to
ensure patient stratification between training and test set.
DS1 was further split into 50% train, and 50% validation
sets, stratified by beat class. DS2 was kept for model as-
sessment. During training, the model with the best vali-
dation F1 score over 10 epochs was kept for evaluation.
As a control, a randomly initialized CNN (Randinit) was
trained from scratch with the same loss, optimizer and
scheduler over 50 epochs. For leadview, leadview +
MHD and Randinit, 10 models were trained to enable
statistical comparisons.

Final assesment on ECG acquired during MRI was per-
formed on an in-house [4,6] database. It contained signals
acquired on a 1.5T MRI scanner, either outside the scan-
ner (o-), inside the scanner without image acquisition (i-),
during MRI pulse sequences (s-). The heartbeat classes

Split o- i- s- all
N 5209 5506 12902 23617
V’ 298 220 802 1320

Table 1. Beat distribution on the MRI database for the
different patient configurations.

Dataset Randinit lead view lead view+MHD
DS2 0.88±0.03 0.59±0.10 0.63±0.06
MRI

o- 0.27±0.15 0.48±0.27 0.62±0.23
i- 0.21±0.08 0.30±0.17 0.40±0.15
s- 0.18±0.10 0.30±0.13 0.40±0.10
all 0.21±0.10 0.33±0.16 0.44±0.13

Table 2. F1 scores (mean and standard deviation) for
the different training configurations on DS2 and MRI
databases

distribution is summarized in Table 1.

3. Results

F1 scores obtained on DS2 and MRI databases are as-
sembled in Table 2. Randinit model, that is without
pretraining, outperformed both finetuned models on DS2,
but Randinit results were not generalizable with signifi-
cantly lower F1 performance on the MRI database. Com-
parison of both pretrained models showed that simple
leadview+MHD augmentation performed slightly better
on DS2 than the simple leadview but no statistically sig-
nificant difference was found between both augmentations
when using Wilcoxon test. On the in-house MRI database,
leadview was outperformed by the most MHD specific
augmentation leadview+MHD in all circumstances (in-
side, outside the MRI bore, and during sequences).

An average increase of 0.21 on the F1 score was ob-
served when using the proposed data augmentation. A
Wilcoxon test showed a difference between Randinit and
leadview+MHD (p=0.02). Surprisingly, there is no dif-
ference in the self supervised learning approaches between
the in bore (i-) and during the image acquisition (s-).

4. Discussion

In this work, we proposed a parametric representation
of MHD artefacts based on Hermite function. Using a
publicly available database we learnt the probability dis-
tribution of these Hermite parameters, which allows us
to generate (by sampling) an infinite number synthetic
MHD artefacts. We demonstrated that this approach can
be used for data augmentation purpose and/or generate big
databases of ECG data corrupted by synthetic MHD arte-
facts.
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As demonstrated by the performance of the proposed
data augmentation technique, the proposed MHD artefact
generator can improve the robustness of the heartbeat clas-
sifier to ECG acquired in the MRI environment. Overall
performance on the MRI database is relatively good, but
there is a significant drop between ECG acquired outside
the MRI bore and ECG acquired inside (i- and s-). This
highlights the need for further improvements in the rep-
resentation learning (more augmentations) but also maybe
in the training of the classifier (using ECG in MRI for the
training of linear classification?). As the focus of this study
was on assessing the MHD artefact generator, neither de-
noising of the gradient artefacts [6], nor data augmenta-
tions related to the gradient noise were applied.

Comparison between i- and s- conditions for the self
supervised approaches suggests the ECG representations
may be already robust to gradient artefacts. This should
be tested via introduction of gradient preprocessing or pre-
training including data augmentations related to this arte-
fact. The poor performance of leadview on the MRI
database suggests that MHD specific augmentation is use-
ful, and seems to be indicating the generated MHD models
are realistic enough to improve ECG in MRI analysis. Fur-
ther improvements are required for the applicability of the
solution in clinical practice, as current level performance
do not allow for accurate and robust detection of ventricu-
lar heartbeats on ECG signals acquired in MRI.
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